%I #22 Jan 07 2025 10:05:04
%S 2,10,102,1012,10104,101010,1010124,10101216,101010176,1010101504,
%T 10101010304,101010101248,1010101013280,10101010101248,
%U 101010101013504,1010101010137856,10101010101010432,101010101010145280,1010101010101010432,10101010101010497536,101010101010101084160,1010101010101010620416,10101010101010105368576
%N a(n) is the least number that has n prime factors, counted by multiplicity, and n runs in its decimal representation.
%C Is a(n) always an n-digit member of A043096, i.e. a number with all pairs of adjacent digits distinct?
%F A001222(a(n)) = A043562(a(n)) = n.
%e a(4) = 1012 because 1012 = 2^2 * 11 * 23 has 4 prime factors, counted with multiplicity, and 4 runs in its decimal representation, and no smaller number works.
%p f:= proc(n)
%p local x,x0,L,t,i;
%p if n::odd then x0:= (10^(n+1)-1)/99 else x0:= (10^(n+1)-10)/99 fi;
%p for x from x0 do
%p L:= convert(x,base,10);
%p t:= nops(L) - numboccur(0, L[2..-1]-L[1..-2]);
%p if t = n and numtheory:-bigomega(x) = n then return x fi
%p od
%p end proc:
%p map(f, [$1..23]);
%Y Cf. A001222, A043096, A043562, A379229.
%K nonn,base
%O 1,1
%A _Robert Israel_, Jan 07 2025