login
A379389
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.
5
2, 6, 8, 9, 9, 2, 5, 2, 3, 4, 2, 0, 6, 5, 7, 6, 3, 4, 0, 0, 7, 2, 8, 8, 1, 5, 1, 4, 6, 3, 1, 6, 1, 6, 8, 3, 0, 0, 3, 5, 3, 3, 0, 3, 7, 2, 4, 9, 2, 1, 1, 4, 1, 4, 3, 1, 6, 0, 1, 1, 4, 5, 0, 7, 8, 1, 7, 2, 8, 3, 1, 9, 1, 3, 5, 1, 4, 1, 4, 4, 0, 1, 8, 9, 8, 9, 6, 6, 3, 8
OFFSET
1,1
COMMENTS
The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.
LINKS
Eric Weisstein's World of Mathematics, Deltoidal Hexecontahedron.
FORMULA
Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).
EXAMPLE
2.6899252342065763400728815146316168300353303724921...
MATHEMATICA
First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]
CROSSREFS
Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
Cf. A002163.
Sequence in context: A320573 A003610 A201776 * A206476 A077477 A095879
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 23 2024
STATUS
approved