login
A379369
Numerators of the partial alternating sums of the reciprocals of the squarefree kernel function (A007947).
3
1, 1, 5, 1, 8, 11, 107, 1, 12, 17, 257, 193, 3664, 5183, 479, -261, -3436, -37633, -612925, -2017297, -1786352, -4013599, -82613087, -19965872, -12529443, -27919051, -9392863, -12664034, -255710551, -242359181, -5356570201, -19391659278, -55136182529, -116171203003
OFFSET
1,3
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.6, pp. 24-26.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A007947(k)).
a(n)/A379370(n) ~ -A379367(n)/A379368(n).
EXAMPLE
Fractions begin with 1, 1/2, 5/6, 1/3, 8/15, 11/30, 107/210, 1/105, 12/35, 17/70, 257/770, 193/1155, ...
MATHEMATICA
rad[n_] := Times @@ FactorInteger[n][[;; , 1]]; Numerator[Accumulate[Table[(-1)^(n+1)/rad[n], {n, 1, 50}]]]
PROG
(PARI) rad(n) = vecprod(factor(n)[, 1]);
list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / rad(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A007947, A073355, A370896, A379367, A379368, A379370 (denominators).
Sequence in context: A269229 A193089 A154310 * A193856 A255294 A115521
KEYWORD
sign,easy,frac
AUTHOR
Amiram Eldar, Dec 21 2024
STATUS
approved