Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 23 2024 02:16:10
%S 3,4,5,7,7,10,11,18,20,23,31,63,77,127,212,332,569,1034,1749,2961,
%T 5236,9319,16524,28583,53618,96310,174573,309344,584500,1077230,
%U 1984982,3532258,6791403,12564409,23445306,42349391,81321728,152375491,284898585,524549566,1006478176,1894215667
%N Number of subsets of the first n nonzero n-gonal numbers whose sum is a nonzero n-gonal number.
%H Michael S. Branicky, <a href="/A379337/b379337.txt">Table of n, a(n) for n = 2..83</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygonalNumber.html">Polygonal Number</a>
%e a(3) = 4 subsets: {1}, {3}, {6}, {1, 3, 6}.
%e a(4) = 5 subsets: {1}, {4}, {9}, {16}, {9, 16}.
%e a(5) = 7 subsets: {1}, {5}, {12}, {22}, {35}, {1, 12, 22}, {1, 12, 22, 35}.
%o (Python)
%o from functools import cache
%o from itertools import count, takewhile
%o def ngonal(n, k): return k*((n-2)*k - (n-4))//2
%o def a(n):
%o @cache
%o def b(i, s):
%o if i == 0: return 1 if s > 0 and s in ISNGONAL else 0
%o return b(i-1, s) + b(i-1, s+NGONAL[i-1])
%o NGONAL = [ngonal(n, i) for i in range(1, n+1)]
%o BOUND = sum(NGONAL)
%o ISNGONAL = set(takewhile(lambda x: x<=BOUND, (ngonal(n, i) for i in count(1))))
%o b.cache_clear()
%o return b(n, 0)
%o print([a(n) for n in range(2, 23)]) # _Michael S. Branicky_, Dec 21 2024
%Y Cf. A057145, A377123.
%K nonn,new
%O 2,1
%A _Ilya Gutkovskiy_, Dec 21 2024
%E a(2) inserted and a(23) and beyond from _Michael S. Branicky_, Dec 21 2024