login
A379333
Numbers k such that lambda(k)^k == lambda(k) (mod k), where lambda = A002322.
0
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 65, 67, 69, 71, 73, 79, 83, 85, 87, 89, 91, 93, 97, 101, 103, 107, 109, 111, 113, 123, 127, 129, 131, 133, 137, 139, 141, 145, 149, 151, 157, 159, 163, 167, 171, 173, 177, 179, 181, 183, 185, 190, 191, 193, 197, 199
OFFSET
1,2
COMMENTS
All primes numbers are terms.
MATHEMATICA
q[k_] := Module[{c = CarmichaelLambda[k]}, PowerMod[c, k, k] == c]; q[1] = True; Select[Range[200], q] (* Amiram Eldar, Dec 21 2024 *)
CROSSREFS
Cf. A002322 (lambda).
Sequence in context: A331635 A320055 A072697 * A102553 A069161 A328603
KEYWORD
nonn
AUTHOR
STATUS
approved