Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 11 2025 03:59:21
%S 0,1,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6,6,6,6,
%T 6,6,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
%U 8,8,9,9,10,11,12,13,13,14,14,14,14,14,15
%N a(n) is the number of coincidences of the first n terms of this sequence and A379266, i.e., the number of equalities a(k) = A379266(k) for 0 <= k < n.
%C a(n) appears to grow roughly like sqrt(n).
%H Pontus von Brömssen, <a href="/A379265/b379265.txt">Table of n, a(n) for n = 0..9999</a>
%H Pontus von Brömssen, <a href="/A379265/a379265.png">Plot of A379265(n), A379266(n), and sqrt(n) for n=0..100000</a>.
%F For n >= 1, a(n) = a(n-1)+1 if a(n-1) = A379266(n-1), otherwise a(n) = a(n-1).
%o (Python)
%o def A379265_list(nterms):
%o A = []
%o A379266 = []
%o for n in range(nterms):
%o if n != 0:
%o a += (a==A379266[-1])
%o else:
%o a = 0
%o b = sum(1 for x,y in zip(A,reversed(A379266)) if x==y)
%o A.append(a)
%o A379266.append(b)
%o return A
%Y Cf. A272727, A379266, A379297.
%K nonn,changed
%O 0,3
%A _Pontus von Brömssen_, Dec 19 2024