login
A379255
G.f. A(x) satisfies A(x) = ( (1 + x*A(x))/(1 - x*A(x)^3) )^3.
1
1, 6, 90, 1910, 47250, 1274406, 36344906, 1077809718, 32899427106, 1026823733702, 32619190553274, 1051205539768566, 34282637873690290, 1129326395659189734, 37522172645425790634, 1255954522404101871286, 42312438228338307500610, 1433621819994034883749254
OFFSET
0,2
FORMULA
G.f.: B(x)^3 where B(x) is the g.f. of A379257.
a(n) = Sum_{k=0..n} binomial(3*n+7*k+2,k) * binomial(3*n+6*k+3,n-k)/(n+2*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*n+7*k+2, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 19 2024
STATUS
approved