login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.
4

%I #12 Dec 22 2024 09:08:02

%S 1,13,21,31,233,35,57,403,439,73,121,845,961,805,137,133,1549,1899,

%T 1831,1765,397,183,2753,4011,4017,3943,3025,475,403,2331,4399,7665,

%U 7537,4123,2159,695,307,7919,5945,9709,16177,9365,5737,7635,855,381,5839,12501,10447,17965,18389,10707,13261,5299,901,741,4953,9525,27083,24207,49465,24339,27295,10093,4537,1837

%N Square array A(n, k) = A048720(A065621(sigma((2n-1)^2)), sigma((2k-1)^2)), read by falling antidiagonals, (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), etc.

%H Antti Karttunen, <a href="/A379221/b379221.txt">Table of n, a(n) for n = 1..10440</a>

%H <a href="/index/Con#CongruCrossDomain">Index entries for sequences defined by congruent products between domains N and GF(2)[X]</a>.

%H <a href="/index/Ge#GF2X">Index entries for sequences related to polynomials in ring GF(2)[X]</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F A(n, k) = A277320(A379223(n), A379223(k)).

%e The top left corner of the array:

%e n\k | 1 2 3 4 5 6 7 8 9

%e (*2-1)^2 | 1 9 25 49 81 121 169 225 289

%e ---------+-------------------------------------------------------------------

%e 1 1 | 1, 13, 31, 57, 121, 133, 183, 403, 307,

%e 2 9 | 21, 233, 403, 845, 1549, 2753, 2331, 7919, 5839,

%e 3 25 | 35, 439, 961, 1899, 4011, 4399, 5945, 12501, 9525,

%e 4 49 | 73, 805, 1831, 4017, 7665, 9709, 10447, 27083, 17515,

%e 5 81 | 137, 1765, 3943, 7537, 16177, 17965, 24207, 50315, 37163,

%e 6 121 | 397, 3025, 4123, 9365, 18389, 49465, 60243, 86471, 108263,

%e 7 169 | 475, 2159, 5737, 10707, 24339, 60215, 52817, 76125, 131005,

%e 8 225 | 695, 7635, 13261, 27295, 51039, 87019, 76565, 245801, 183625,

%e 9 289 | 855, 5299, 10093, 18047, 37823, 107915, 130229, 183305, 200041,

%e 10 361 | 901, 4537, 12003, 22365, 46621, 118545, 98539, 162655, 248191,

%e 11 441 | 1837, 8945, 24187, 43317, 90741, 232729, 201779, 311335, 504583,

%e 12 529 | 1657, 11349, 18231, 40193, 66369, 205597, 231263, 338075, 449339,

%e 13 625 | 1301, 14825, 25235, 56909, 105229, 170945, 156187, 508399, 387535,

%e 14 729 | 3277, 22929, 36059, 81877, 134293, 416121, 464275, 684551, 888103,

%e 15 841 | 1451, 15967, 28601, 50979, 110051, 181895, 139777, 469709, 346669,

%e 16 961 | 1057, 13741, 32767, 58137, 125785, 132133, 182871, 425971, 322387,

%o (PARI)

%o up_to = 66;

%o A048720(b, c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);

%o A065621(n) = bitxor(n-1, n+n-1);

%o A379221sq(x,y) = A048720(A065621(sigma((x+x-1)^2)), sigma((y+y-1)^2));

%o A379221list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379221sq(col,(a-(col-1))))); (v); };

%o v379221 = A379221list(up_to);

%o A379221(n) = v379221[n];

%Y Cf. A000203, A016754, A048720, A065621, A277320.

%Y Cf. A379223 (row 1), A379224 (column 1).

%Y Cf. A379121, A379122, A379123, A379124, A379125.

%Y Cf. also A065768, A379220.

%K nonn,tabl,new

%O 1,2

%A _Antti Karttunen_, Dec 22 2024