Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 17 2024 08:44:37
%S 1,2,3,6,6,14,15,15,20,19,23,23,27,34,35,44,40,36,40,44,41,48,52,62,
%T 64,66,57,66,72,79,71,75,77,78,79,78,88,86,92,100,103,103,92,116,96,
%U 116,117,113,129,117,123,128,123,126,130,133,129,142,147,134,135,148
%N The binary weights of the Apéry numbers (A005259).
%H Amiram Eldar, <a href="/A379153/b379153.txt">Table of n, a(n) for n = 0..10000</a>
%H Arnold Knopfmacher and Florian Luca, <a href="https://doi.org/10.1016/j.jnt.2011.07.004">Digit sums of binomial sums</a>, Journal of Number Theory, Vol. 132, No. 2 (2012), pp. 324-331.
%H Florian Luca and Igor E. Shparlinski, <a href="https://doi.org/10.1007/s00026-011-0074-9">On the g-ary expansions of Apéry, Motzkin, Schröder and other combinatorial numbers</a>, Annals of Combinatorics, Vol. 14 (2010), pp. 507-524.
%F a(n) = A000120(A005259(n)).
%F a(n) > c * (log(n)/log(log(n)))^(1/4) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Luca and Shparlinski, 2010).
%F a(n) > c * log(n)/log(log(n)) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Knopfmacher and Luca, 2012).
%F Conjecture: Limit_{m->oo} (1/m^2) * Sum_{k=1..m} a(k) = log(sqrt(2) + 1)/log(2) = 1.2715533... (Knopfmacher and Luca, 2012).
%t a[n_] := DigitCount[Sum[(Binomial[n, k] * Binomial[n+k, k])^2, {k, 0, n}], 2, 1]; Array[a, 100, 0]
%o (PARI) a(n) = hammingweight(sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2));
%Y Cf. A000120, A005259.
%Y Similar sequences: A011373, A079584, A082481, A379151, A379152.
%K nonn,easy,base,new
%O 0,2
%A _Amiram Eldar_, Dec 17 2024