Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 20 2024 02:49:42
%S 1,4,4,5,3,3,1,9,2,5,6,5,2,2,1,4,8,2,8,3,1,5,8,5,1,2,4,9,1,0,2,0,8,1,
%T 1,9,7,7,2,3,8,7,1,1,7,7,8,4,3,0,3,8,9,7,1,6,2,5,7,9,0,6,7,3,8,1,7,3,
%U 5,4,5,5,1,5,9,4,0,1,5,6,3,8,4,2,8,0,6,3,3,2
%N Decimal expansion of the inradius of a pentakis dodecahedron with unit shorter edge length.
%C The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.
%H Paolo Xausa, <a href="/A379134/b379134.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentakisDodecahedron.html">Pentakis Dodecahedron</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentakis_dodecahedron">Pentakis dodecahedron</a>.
%F Equals sqrt(477/436 + 97*sqrt(5)/218) = sqrt(477/436 + 97*A002163/218).
%F Equals the largest root of 1744*x^4 - 3816*x^2 + 361.
%e 1.4453319256522148283158512491020811977238711778430...
%t First[RealDigits[Sqrt[477/436 + 97*Sqrt[5]/218], 10, 100]] (* or *)
%t First[RealDigits[PolyhedronData["PentakisDodecahedron", "Inradius"], 10, 100]]
%Y Cf. A379132 (surface area), A379133 (volume), A379135 (midradius), A379136 (dihedral angle).
%Y Cf. A002163.
%K nonn,cons,easy,new
%O 1,2
%A _Paolo Xausa_, Dec 17 2024