login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of sigma(2*n)/(2*n).
4

%I #19 Dec 14 2024 05:25:40

%S 3,7,2,15,9,7,12,31,13,21,18,5,21,2,12,63,27,91,30,9,16,21,36,31,93,

%T 49,20,15,45,14,48,127,24,63,72,65,57,35,28,93,63,8,66,45,13,42,72,21,

%U 171,217,36,105,81,70,108,31,40,105,90,3,93,56,52,255,126,28,102,135,48,12,108,403,111,133,62,75,144,98,120

%N Numerator of sigma(2*n)/(2*n).

%H Antti Karttunen, <a href="/A378995/b378995.txt">Table of n, a(n) for n = 1..32769</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F a(n) = A017665(2*n).

%F a(n) = A062731(n) / A378994(n).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A378996(k) = 5*Pi^2/24 (= 10 * A245058). - _Amiram Eldar_, Dec 14 2024

%t a[n_] := Numerator[DivisorSigma[-1, 2*n]]; Array[a, 100] (* _Amiram Eldar_, Dec 14 2024 *)

%o (PARI) A378995(n) = numerator(sigma(2*n)/(2*n));

%Y Even bisection of A017665.

%Y Topmost row of array A341605.

%Y Cf. A062731, A245058, A378994, A378996 (denominators).

%Y Cf. also A341525.

%K nonn,frac,easy

%O 1,1

%A _Antti Karttunen_, Dec 13 2024