login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A011371(n) - A048881(n); The exponent of the highest power of 2 dividing the n-th factorial minus the exponent of the highest power of 2 dividing n-th Catalan number.
1

%I #22 Dec 30 2024 16:56:55

%S 0,0,0,1,2,2,2,4,6,6,6,7,8,8,8,11,14,14,14,15,16,16,16,18,20,20,20,21,

%T 22,22,22,26,30,30,30,31,32,32,32,34,36,36,36,37,38,38,38,41,44,44,44,

%U 45,46,46,46,48,50,50,50,51,52,52,52,57,62,62,62,63,64,64,64,66,68,68,68,69,70,70,70,73,76,76,76

%N a(n) = A011371(n) - A048881(n); The exponent of the highest power of 2 dividing the n-th factorial minus the exponent of the highest power of 2 dividing n-th Catalan number.

%C Apparently, after the initial three 0's, only terms of A092054 occur, every other as a single copy, and every other in a batch of 3 duplicated terms.

%H Antti Karttunen, <a href="/A378992/b378992.txt">Table of n, a(n) for n = 0..20000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A007814(A000142(n)) - A007814(A000108(n)) = A011371(n) - A048881(n).

%F a(0) = 0; for n > 0, a(n) = A050605(n-1) + a(n-1), where A050605(n) = A007814(n+1)+A007814(n+2)-1.

%t A378992[n_] := n - DigitCount[n, 2, 1] - DigitCount[n + 1, 2, 1] + 1;

%t Array[A378992, 100, 0] (* or *)

%t MapIndexed[#2[[1]] - # &, Total[Partition[DigitCount[Range[0, 100], 2, 1], 2, 1], {2}]] (* _Paolo Xausa_, Dec 28 2024 *)

%o (PARI) A378992(n) = (1+(n-hammingweight(n)-hammingweight(1+n)));

%Y Partial sums of A050605.

%Y Cf. A000108, A000120, A000142, A007814, A011371, A048881.

%Y Cf. also A092054, A204988, A050603, A136480.

%K nonn,easy,new

%O 0,5

%A _Antti Karttunen_, Dec 16 2024