login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378935
Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the rook graph K_m X K_n.
0
0, 1, 1, 3, 6, 3, 7, 22, 22, 7, 15, 84, 150, 84, 15, 31, 346, 1276, 1276, 346, 31, 63, 1476, 11538, 23214, 11538, 1476, 63, 127, 6322, 102772, 418912, 418912, 102772, 6322, 127, 255, 26844, 890130, 7290534, 14673870, 7290534, 890130, 26844, 255, 511, 112666, 7525876, 123174016, 496484776, 496484776, 123174016, 7525876, 112666, 511
OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
Eric Weisstein's World of Mathematics, Minimal Edge Cut.
Eric Weisstein's World of Mathematics, Rook Graph.
FORMULA
T(m,n) = A360873(m,n) + (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1).
T(m,n) = T(n,m).
EXAMPLE
Array begins:
======================================================
m\n | 1 2 3 4 5 6 ...
----+-------------------------------------------------
1 | 0 1 3 7 15 31 ...
2 | 1 6 22 84 346 1476 ...
3 | 3 22 150 1276 11538 102772 ...
4 | 7 84 1276 23214 418912 7290534 ...
5 | 15 346 11538 418912 14673870 496484776 ...
6 | 31 1476 102772 7290534 496484776 32893769886 ...
...
PROG
(PARI) \\ Needs G from A360873.
T(M, N=M) = {G(M, N) + matrix(M, N, m, n, (2^(m-1) - 1)*(2^(n-1) - 1) - 2^(m*n-1))}
{ my(A=T(7)); for(n=1, #A~, print(A[n, ])) }
CROSSREFS
Main diagonal is A378936.
Rows 1..2 are A000225(n-1), A378937.
Sequence in context: A123146 A016661 A376827 * A201143 A326935 A135003
KEYWORD
nonn,tabl,new
AUTHOR
Andrew Howroyd, Dec 12 2024
STATUS
approved