login
A378883
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5).
1
1, 1, 4, 24, 171, 1338, 11109, 96100, 856762, 7816616, 72627241, 684859147, 6537520290, 63050669143, 613441446154, 6013687144000, 59343220508344, 589004488233064, 5876204912724812, 58893312496308755, 592682966496901253, 5986771171677305889, 60677419447552591497
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^2/(1 - x*A(x)^5)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=1, s=1, t=3, u=5) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A378882.
Sequence in context: A369478 A368975 A366980 * A369471 A347651 A032349
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 09 2024
STATUS
approved