login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378883
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5).
0
1, 1, 4, 24, 171, 1338, 11109, 96100, 856762, 7816616, 72627241, 684859147, 6537520290, 63050669143, 613441446154, 6013687144000, 59343220508344, 589004488233064, 5876204912724812, 58893312496308755, 592682966496901253, 5986771171677305889, 60677419447552591497
OFFSET
0,3
FORMULA
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^2/(1 - x*A(x)^5)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
PROG
(PARI) a(n, r=1, s=1, t=3, u=5) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Cf. A378882.
Sequence in context: A369478 A368975 A366980 * A369471 A347651 A032349
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 09 2024
STATUS
approved