login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lower matching number of the (n,n)-stacked book graph.
0

%I #7 Dec 07 2024 10:42:04

%S 1,2,4,6,10,14,17,24,30,34,44,52,57,70,80,86,102,114,121,140,154,162,

%T 184,200,209,234,252,262,290,310,321,352,374,386,420,444,457,494,520,

%U 534,574,602,617,660,690,706,752,784,801,850,884,902,954,990,1009

%N Lower matching number of the (n,n)-stacked book graph.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LowerMatchingNumber.html">Lower Matching Number</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StackedBookGraph.html">Stacked Book Graph</a>.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).

%F G.f.: x*(-1-x-2*x^2-2*x^4)/((-1+x)^3*(1+x+x^2)^2).

%F a(n) = 1*a(n-1)+2*a(n-3)-2*a(n-4)-1*a(n-6)+1*a(n-7).

%t Table[1/27 (6 + 6 n + 9 n^2 + 6 (n + 2) ChebyshevU[n, -1/2] + 3 (1 + n) ChebyshevU[n + 1, -1/2] - 15 Cos[2 n Pi/3] + 11 Sqrt[3] Sin[2 n Pi/3]), {n, 20}]

%t LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 2, 4, 6, 10, 14, 17}, 20]

%t CoefficientList[Series[-(1 + x + 2 x^2 + 2 x^4)/((-1 + x)^3 (1 + x + x^2)^2), {x, 0, 20}], x]

%K nonn

%O 1,2

%A _Eric W. Weisstein_, Dec 07 2024