login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^3 * 2^n * binomial(3*n, n) / 3.
1

%I #7 Dec 07 2024 05:39:15

%S 0,2,160,6048,168960,4004000,85542912,1701719040,32133218304,

%T 583116019200,10255365120000,175853140869120,2953078190899200,

%U 48728661198077952,792158036489666560,12713192776728576000,201760465448645689344,3170643145439310643200,49394436443159427809280

%N a(n) = n^3 * 2^n * binomial(3*n, n) / 3.

%H Amiram Eldar, <a href="/A378781/b378781.txt">Table of n, a(n) for n = 0..500</a>

%H D. V. Chudnovsky and G. V. Chudnovsky, <a href="https://doi.org/10.1073/pnas.95.6.2744">Classification of hypergeometric identities for Pi and other logarithms of algebraic numbers</a>, Proceedings of the National Academy of Sciences, Vol. 95, No. 6 (1998), pp. 2744-2749. See p. 2749.

%F a(n) = A128789(n) * A005809(n) / 3.

%F a(n) = n * A378778(n) / 3.

%F a(n) = n^2 * A378780(n) / 3.

%F Sum_{n>=1) 1/a(n) = 3*G*Pi - Pi^2*log(2)/8 + log(2)^3/2 - 99*zeta(3)/16, where G is Catalan's constant (Chudnovsky and Chudnovsky, 1998).

%t a[n_] := n^3 * 2^n * Binomial[3*n, n] / 3; Array[a, 25, 0]

%o (PARI) a(n) = n^3 * 2^n * binomial(3*n, n) / 3;

%Y Cf. A005809, A128789, A378778, A378780.

%Y Cf. A002117, A006752.

%K nonn,easy,new

%O 0,2

%A _Amiram Eldar_, Dec 07 2024