login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.
0

%I #7 Dec 15 2024 21:09:28

%S 1,0,0,0,2,-2,3,0,3,-6,7,0,9,-8,-6,0,14,-6,15,0,-5,-16,18,0,4,-20,-2,

%T 0,24,14,25,0,-12,-30,-15,0,33,-32,-18,0,37,12,38,0,-12,-38,41,0,14,

%U -8,-30,0,48,4,-33,0,-30,-50,53,0,55,-52,-27,0,-38,26,63,0,-33,32,66,0,69,-68,-6,0,-38,38,73,0,7,-76,78

%N Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.

%H Antti Karttunen, <a href="/A378756/b378756.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = Sum_{d|n} A046692(d)*A005187(n/d).

%o (PARI)

%o A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };

%o A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };

%o A378756(n) = sumdiv(n,d,A046692(d)*A005187(n/d));

%Y Cf. A005187, A046692, A378757 (Dirichlet inverse).

%Y Cf. also A294898.

%K sign,new

%O 1,5

%A _Antti Karttunen_, Dec 15 2024