login
Numbers that are primitive Zumkeller, but not primitive non-deficient.
4

%I #6 Dec 05 2024 21:49:39

%S 8228,12716,17204,21692,23188,27676,30668,32164,35156,39644,44132,

%T 45628,50116,53108,54604,59092,62084,66572,72556,75548,77044,80036,

%U 81532,84524,94996,97988,102476,103972,111452,112948,117436,121924,124916,129404,133892,135388,142868,144364,147356,148852,157828,166804,169796

%N Numbers that are primitive Zumkeller, but not primitive non-deficient.

%H Antti Karttunen, <a href="/A378657/b378657.txt">Table of n, a(n) for n = 1..75</a>

%F {k such that A378537(k) = 1 and A341619(k) = 0}.

%o (PARI) is_A378657(n) = (A378537(n) && !A341619(n));

%Y Sequence A180332 without any terms of A006039.

%Y Setwise difference A378538 \ A378656.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 05 2024