login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest non prime power <= prime(n).
1

%I #8 Dec 07 2024 19:31:43

%S 1,1,1,6,10,12,15,18,22,28,30,36,40,42,46,52,58,60,66,70,72,78,82,88,

%T 96,100,102,106,108,112,126,130,136,138,148,150,156,162,166,172,178,

%U 180,190,192,196,198,210,222,226,228,232,238,240,250,255,262,268,270

%N Greatest non prime power <= prime(n).

%C Conjecture: Equal to A006093(n) = prime(n) - 1 except at terms of A159611.

%e The first number line below shows the non prime powers. The second shows the primes:

%e --1-------------6----------10----12----14-15-------18----20-21-22----24--

%e =====2==3====5=====7==========11====13==========17====19==========23=====

%t Table[Max[Select[Range[Prime[n]],Not@*PrimePowerQ]],{n,100}]

%Y For nonprime instead of non prime power we have A156037.

%Y Restriction of A378367.

%Y Lengths are A378615.

%Y For nonsquarefree: A378032 (diffs A378034), restriction of A378033 (diffs A378036).

%Y A000040 lists the primes, differences A001223

%Y A000961 and A246655 list the prime powers, differences A057820.

%Y A024619 lists the non prime powers, differences A375735, seconds A376599.

%Y A080101 counts prime powers between primes (exclusive), inclusive A366833.

%Y A361102 lists the non powers of primes, differences A375708.

%Y Prime powers between primes:

%Y - A377057 positive

%Y - A377286 zero

%Y - A377287 one

%Y - A377288 two

%Y Cf. A006093, A053607, A143731, A159611, A304521, A343249, A345531, A356068, A368748, A377281, A377289, A377703, A377781.

%K nonn,new

%O 1,4

%A _Gus Wiseman_, Dec 06 2024