Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 01 2024 19:54:40
%S 1,2,2,3,2,4,2,5,3,6,2,7,2,6,6,8,2,9,2,10,6,6,2,11,3,6,5,12,2,13,2,14,
%T 6,6,6,15,2,6,6,16,2,17,2,18,19,6,2,20,3,18,6,18,2,21,6,21,6,6,2,22,2,
%U 6,23,24,6,25,2,18,6,26,2,27,2,6,18,18,6,28,2,29,8,6,2,30,6,6,6,31,2,32,6,18,6,6,6,33,2,18,23,34,2,28,2,35,36
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A119347(i) = A119347(j), for all i, j >= 1.
%C Restricted growth sequence transform of the ordered pair [A046523(n), A119347(n)].
%H Antti Karttunen, <a href="/A378602/b378602.txt">Table of n, a(n) for n = 1..100000</a>
%o (PARI)
%o up_to = 100000;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
%o A119347(n) = { my(c=[0]); fordiv(n,d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; };
%o Aux378602(n) = [A046523(n), A119347(n)];
%o v378602 = rgs_transform(vector(up_to, n, Aux378602(n)));
%o A378602(n) = v378602[n];
%Y Cf. A046523, A119347, A101296.
%Y Cf. also A378601, A378603.
%K nonn,new
%O 1,2
%A _Antti Karttunen_, Dec 01 2024