login
A378561
Number of ways to place k nonattacking anassas on an n X n chess board. Triangle T(n,k) read by rows.
1
1, 1, 1, 1, 4, 3, 1, 9, 22, 14, 1, 16, 82, 156, 90, 1, 25, 220, 840, 1366, 738, 1, 36, 485, 3100, 9796, 14288, 7364, 1, 49, 938, 9030, 46816, 129360, 174112, 86608, 1, 64, 1652, 22344, 172116, 767424, 1916776, 2424880, 1173240, 1, 81, 2712, 49056, 525756, 3442740, 13682320, 31572720, 38019496, 17990600
OFFSET
0,5
COMMENTS
Anassas (also called semi-rook+semi-bishop) are chess pieces with 2 moves: one horizontal or vertical and one diagonal.
LINKS
S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, A q-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders, J. Korean Math. Soc., 57(6): 1407-1433, 2020; see also arXiv preprint, arXiv:1609.00853 [math.CO], 2016-2020.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 716-722.
Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024.
FORMULA
T(n,k) = Sum_{j=0..ceiling(k/2)} j! * binomial(n-k+j,j) * Stirling2(n,n-k+j) * 2^(k-2*j) * (binomial(k-j,j-1) + binomial(k-j+1,j)).
EXAMPLE
Triangle begins:
1;
1 1;
1 4 3;
1 9 22 14;
1 16 82 156 90;
1 25 220 840 1366 738;
1 36 485 3100 9796 14288 7364;
...
PROG
(SageMath) print([sum([factorial(j)*binomial(n-k+j, j)*stirling_number2(n, n-k+j)*2^(k-2*j)*(binomial(k-j, j-1)+binomial(k-j+1, j)) for j in [0..ceil(k/2)]]) for n in [0..10] for k in [0..n]])
CROSSREFS
Columns k=0-1 give: A000012, A000290.
Main diagonal gives A088789(n+1).
Sequence in context: A193011 A214859 A123160 * A109692 A039758 A157894
KEYWORD
nonn,easy,tabl
AUTHOR
Eder G. Santos, Nov 30 2024
STATUS
approved