login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet inverse of A336840, where A336840 is the inverse Möbius transform of A048673.
3

%I #7 Nov 30 2024 12:57:22

%S 1,-3,-4,1,-5,10,-7,-1,-1,12,-8,-2,-10,16,14,-2,-11,5,-13,-2,18,18,

%T -16,6,-5,22,-8,-2,-17,-20,-20,-4,20,24,20,1,-22,28,24,8,-23,-20,-25,

%U -2,11,34,-28,14,-19,18,26,-2,-31,32,22,12,30,36,-32,4,-35,42,17,-8,26,-20,-37,-2,36,-14,-38,3,-41,46,26,-2,26

%N Dirichlet inverse of A336840, where A336840 is the inverse Möbius transform of A048673.

%H Antti Karttunen, <a href="/A378520/b378520.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A336840(n/d) * a(d).

%F a(n) = Sum_{d|n} A008683(n/d)*A323893(d)).

%F a(n) = A349915(A003961(n)).

%o (PARI)

%o A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };

%o A336840(n) = sumdiv(n,d,A048673(d));

%o memoA378520 = Map();

%o A378520(n) = if(1==n,1,my(v); if(mapisdefined(memoA378520,n,&v), v, v = -sumdiv(n,d,if(d<n,A336840(n/d)*A378520(d),0)); mapput(memoA378520,n,v); (v)));

%Y Möbius transform of A323893.

%Y Dirichlet inverse of A336840.

%Y Cf. A003961, A008683, A349915.

%K sign,new

%O 1,2

%A _Antti Karttunen_, Nov 30 2024