OFFSET
2,1
COMMENTS
The smallest number k such that A378506(k) = n.
If phi(phi(x)) = k has a solution, then according to Carmichael's totient function conjecture there is at least one another number y != x such that phi(y) = phi(x) and then y is also a solution. Therefore, according to this conjecture, a(1) does not exist.
LINKS
Amiram Eldar, Table of n, a(n) for n = 2..1000
Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
David M. Bressoud, A Course in Computational Number Theory (web page), CNT.m, Computational Number Theory Mathematica package.
Eric Weisstein's World of Mathematics, Carmichael's Totient Function Conjecture.
Wikipedia, Carmichael's totient function conjecture.
MATHEMATICA
s[n_] := Sum[PhiMultiplicity[k], {k, PhiInverse[n]}]; seq[len_] := Module[{v = Table[0, {len+1}], c = 0, k = 1, ns}, While[c < len, ns = s[k]; If[0 < ns <= len + 1 && v[[ns]] == 0, v[[ns]] = k; c++]; k++]; Rest[v]]; seq[30] (* using David M. Bressoud's CNT.m *)
PROG
(PARI) s(n) = vecsum(apply(x -> invphiNum(x), invphi(n))); \\ using Max Alekseyev's invphi.gp
lista(len) = {my(v = vector(len+1), c = 0, k = 1, ns); while(c < len, ns = s(k); if(ns > 0 && ns <= len + 1 && v[ns] == 0, c++; v[ns] = k); k++); vecextract(v, "^1"); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 29 2024
STATUS
approved