login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares where larger digits have smaller multiplicity.
2

%I #18 Nov 29 2024 21:04:23

%S 1,4,9,100,121,225,400,484,676,900,10000,11881,40000,44944,69696,

%T 90000,111556,202500,220900,225625,232324,261121,265225,300304,442225,

%U 444889,695556,1000000,1002001,1020100,1210000,2250000,2295225,4000000,4008004,4080400,4840000,5112121,6760000,8008900,9000000

%N Squares where larger digits have smaller multiplicity.

%C Conjecture: a(n) ≍ n^2. - _Charles R Greathouse IV_, Nov 29 2024

%H Charles R Greathouse IV, <a href="/A378498/b378498.txt">Table of n, a(n) for n = 1..10000</a>

%F n^2 << a(n) << 1.001^n. - _Charles R Greathouse IV_, Nov 29 2024

%t decreasingQ[L_]:=Max[Rest[(L-RotateRight[L])]]<0;

%t sortedQ[n_]:=decreasingQ[Sort[Tally[IntegerDigits[n]]][[All,2]]];

%t Select[Range[10000]^2, sortedQ]

%o (PARI) has(n)=my(d=matreduce(digits(n))[,2]); for(i=2,#d, if(d[i]>=d[i-1], return(0))); 1

%o list(lim)=my(v=List()); for(n=1,sqrtint(lim\1), if(has(n^2), listput(v,n^2))); Vec(v) \\ _Charles R Greathouse IV_, Nov 29 2024

%Y Cf. A000290, A018884, A052046, A235718, A378492.

%K nonn,base

%O 1,2

%A _Erich Friedman_, Nov 28 2024