login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of coronal tilings of a width one length n straight polyiamond central frame with a specific hexiamond tile.
1

%I #20 Dec 12 2024 23:25:11

%S 1272,2644,2684,3141,3144,3185,3184,3185,3184,3185,3184,3185,3184,

%T 3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,

%U 3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185,3184,3185

%N Total number of coronal tilings of a width one length n straight polyiamond central frame with a specific hexiamond tile.

%C For even length n>4 the total number of coronal tilings is 3185.

%C For odd length n>5 the total number of coronal tilings is 3184.

%C The corona can be composed of different numbers of coronal tiles. The number of coronal tilings for a given number of coronal tiles is noted.

%H Craig Knecht, <a href="/A378455/a378455_2.png">Coronal detail</a>.

%H Craig Knecht, <a href="/A378455/a378455.png">Example for the sequence</a>.

%H Craig Knecht, <a href="/A378455/a378455.gif">n=9, 16 coronal tiles, 72 tilings</a>.

%H Craig Knecht, <a href="/A378455/a378455_1.png">Repeating 3185 3184 coronal tiling totals</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).

%F G.f.: x*(1272 + 2644*x + 1412*x^2 + 497*x^3 + 40*x^4 + 44*x^5 + 40*x^6)/(1 - x^2). - _Stefano Spezia_, Nov 27 2024

%K nonn,easy

%O 1,1

%A _Craig Knecht_, Nov 26 2024