login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the integers from 1 to n that are not antidivisors of n.
2

%I #9 Dec 03 2024 15:10:36

%S 1,3,4,7,10,17,18,28,37,41,54,65,72,89,102,122,125,143,172,186,209,

%T 217,242,277,286,327,336,360,411,429,454,470,513,565,578,634,653,671,

%U 728,765,820,837,890,950,949,1023,1068,1120,1153,1195,1284,1284,1343,1433

%N Sum of the integers from 1 to n that are not antidivisors of n.

%C First two equal consecutive values for a(51) = a(52) = 1284.

%F a(n) = A000217(n) - A066417(n).

%e a(30) = 429 because 30*31/2 = 465, the antidivisors of 30 are 4, 12, 20 and 465 - 4 - 12 - 20 = 429.

%p with(numtheory): P:=proc(q) local j,k,n,v; v:=[1];

%p for n from 2 to q do k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;

%p v:=[op(v),n*(n+1)/2-(sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2)];

%p od; op(v); end: P(10^2);

%o (Python)

%o from sympy import divisor_sigma

%o def A378414(n): return 1 if n == 1 else (n*(n+13)>>1)+2-divisor_sigma((m:=n<<1)-1)-divisor_sigma(m+1)-(divisor_sigma(n>>(k:=(~n&n-1).bit_length()))<<k+1) # _Chai Wah Wu_, Dec 03 2024

%Y Cf. A000217, A024816, A066417.

%K nonn,easy

%O 1,2

%A _Paolo P. Lava_, Nov 25 2024