login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of subwords of the form UDDD in nondecreasing Dyck paths of length 2*n.
0

%I #10 Nov 30 2024 12:51:20

%S 0,0,0,1,5,19,64,202,612,1803,5206,14809,41650,116114,321478,885169,

%T 2426462,6627499,18048088,49026874,132901176,359625015,971639014,

%U 2621683741,7065545950,19022080034,51163908874,137499581917,369235213742,990822728623,2657069356996

%N Number of subwords of the form UDDD in nondecreasing Dyck paths of length 2*n.

%C A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.

%H E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.

%H Éva Czabarka, Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.

%H Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-39,74,-69,28,-4).

%F a(n) =((n-3)*L(2n-5)+L(2n-3)+F(2n+2) -5*(n+5)*2^(n-4))/5 for n>=3, where F(n) = A000045(n) and L(n) = A000032(n).

%F G.f.: (-x^5+2 x^4-5 x^3+8 x^2-5 x+1)*x^3/(2 x^3-7 x^2+5 x-1)^2.

%t Table[If[n < 3, 0, (1/5)((n-3)LucasL[2n-5]+LucasL[2n-3]+Fibonacci[2n+2]-5(n+5) 2^(n-4))], {n,0,26}]

%Y Cf. A000032, A000045, A377679, A377670, A375995, A377857, A377866, A377867.

%K nonn,easy,new

%O 0,5

%A _Rigoberto Florez_, Nov 24 2024