login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378272
The smallest number whose divisor set mod p has p elements with p = prime(n).
0
2, 6, 40, 84, 990, 936, 5100, 8208, 12420, 48720, 37200, 139860, 196800, 216720, 118440, 648720, 2180640, 1024800, 1857240, 2385600, 2522880, 4180680, 3884400, 9868320, 17599680, 21816000, 16315200, 18874800, 51273600, 34171200, 48646080, 120163680, 110674080
OFFSET
1,1
COMMENTS
We observe that a(n) == 0 (mod 6) when n>=4.
FORMULA
a(n) = A280171(prime(n)) = A280171(A000040(n)).
EXAMPLE
a(3) = 40: divisors are {1,2,4,5,8,10,20,40}, mod prime(3)=5 this gives {0,1,2,3,4}.
MAPLE
a:= proc(n) option remember; local m, p; p:= ithprime(n); for m from p by p
while nops(map(d-> d mod p, numtheory[divisors](m)))<p do od; m
end:
seq(a(n), n=1..20); # Alois P. Heinz, Nov 21 2024
CROSSREFS
Sequence in context: A331702 A288491 A212883 * A377855 A336959 A027161
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 21 2024
EXTENSIONS
a(16)-a(33) from Alois P. Heinz, Nov 21 2024
STATUS
approved