login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = A(x^2)*M(x)/x, where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.
1

%I #15 Nov 27 2024 10:04:50

%S 1,-1,-2,1,-2,3,3,-2,0,1,5,-3,1,-6,-2,5,-5,-1,-1,1,10,-3,-18,4,0,6,-2,

%T 2,-7,3,10,-8,3,13,3,-4,-5,-1,16,-7,1,-21,-21,13,11,32,-3,-18,14,-12,

%U 27,-5,-29,-14,40,18,-9,-7,-28,-9,28,-12,-1,21,-18,-17,21,-4,2,-26,-55,15,6,57,76,4,-63,-35,-31,12,27

%N G.f. satisfies A(x) = A(x^2)*M(x)/x, where M(x) = Sum_{n>=1} mu(n)*x^n and mu(n) = A008683(n), the Moebius function of n.

%C Given g.f. A(x), x/A(x) equals the g.f. of A378260.

%H Paul D. Hanna, <a href="/A378261/b378261.txt">Table of n, a(n) for n = 0..8200</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = A(x^2)*M(x)/x, where M(x) = Sum_{n>=1} mu(n)*x^n.

%F (2) x = Sum_{n>=1} x^n * A(x^n)/A(x^(2*n)).

%e G.f.: A(x) = 1 - x - 2*x^2 + x^3 - 2*x^4 + 3*x^5 + 3*x^6 - 2*x^7 + x^9 + 5*x^10 - 3*x^11 + x^12 - 6*x^13 - 2*x^14 + 5*x^15 - 5*x^16 - x^17 - x^18 + x^19 + 10*x^20 - 3*x^21 - 18*x^22 + 4*x^23 + 6*x^25 + ...

%e where A(x) = A(x^2)*M(x)/x, with M(x) starting as

%e M(x) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 - x^19 + x^21 + x^22 - x^23 + x^26 - x^29 - x^30 + ... + mu(n)*x^n + ...

%e so that x = M(x) + M(x^2) + M(x^3) + M(x^4) + ... + M(x^n) + ...

%e Thus, because M(x) = x*A(x)/A(x^2), we have

%e x = x*A(x)/A(x^2) + x^2*A(x^2)/A(x^4) + x^3*A(x^3)/A(x^6) + x^4*A(x^4)/A(x^8) + x^5*A(x^5)/A(x^10) + ... + x^n*A(x^n)/A(x^(2*n)) + ...

%e SPECIFIC VALUES.

%e A(z) = 0 at z = 0.58029462380732672306477623722678043664946494150129261513733196007593...

%e at which M(z) = 0; also,

%e A(+/-sqrt(z)) = 0 where sqrt(z) = 0.76177071603424525645824609227751503049205504631631398431010255922079...

%e A(t) = 1 at t = -0.36788404155611343004262030413356489215751069093739780571442285347...

%e and at t = 0.

%e A(t) = 3/4 at t = 0.1857761904825755826296582919924203148981077141603702423677032...

%e and at t = -0.490458121286701964509344440548675674917868267307919314675917...

%e A(t) = 2/3 at t = 0.2335393155019759242193743786104849997659161888659795344146053...

%e and at t = -0.519733956808611007765606585829046829235954761454838631891973...

%e A(t) = 1/2 at t = 0.3198405467887820951152560564404574186606511299096542831871690...

%e and at t = -0.571809669500110081208798541641929396382408973747748977426161...

%e A(t) = 1/3 at t = 0.3999205691655568373317765145229363880031158016542362401450436...

%e and at t = -0.620228052536454037811510479582708461188023489655490588138156...

%e A(t) = 1/4 at t = 0.4397125538469644065749981128335829295493172812091133616367549...

%e and at t = -0.644814296439482673338297235928747677433880338824104561837150...

%e A(2/3) = -0.061742613282000323935088569460595490025354693881260621358878068...

%e A(1/2) = 0.1298319421606939473389436822721728169327823265614184406479845097...

%e A(1/3) = 0.4724530047506755119306074032801526676340305286513455974985300628...

%e A(1/4) = 0.6363603730534968288384199665118751095126750453913421545923659477...

%e A(1/9) = 0.8653204774591832015787933929093873031717584973772619782252127819...

%e A(1/16) = 0.929904155452109003231349129681442625998610476992091204616469757...

%o (PARI) {a(n) = my(A=1-x, M = sum(m=1,n+1,moebius(m)*x^m) +x^2*O(x^n));

%o for(i=1,#binary(n)+1, A = subst(A,x,x^2)*M/x ); polcoef(A,n)}

%o for(n=0,80, print1(a(n),", "))

%Y Cf. A378260, A195589, A008683, A181439.

%K sign

%O 0,3

%A _Paul D. Hanna_, Nov 26 2024