login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378171
Number of subsets of the first n positive cubes whose sum is a positive cube.
2
1, 2, 3, 4, 6, 7, 8, 11, 12, 18, 23, 32, 42, 67, 99, 150, 247, 391, 635, 1098, 1865, 2927, 4932, 9109, 14825, 26926, 48452, 83758, 148387, 263258, 468595, 840912, 1559322, 2785642, 5146754, 9454946, 16756330, 31372080, 57754175, 105385375, 196773661, 368705288, 671572482
OFFSET
1,2
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..74
EXAMPLE
a(8) = 11 subsets: {1}, {8}, {27}, {64}, {125}, {216}, {343}, {512}, {1, 216, 512}, {27, 64, 125} and {1, 27, 64, 125, 512}.
PROG
(Python)
from sympy import integer_nthroot
def is_cube(n): return integer_nthroot(n, 3)[1]
from functools import cache
@cache
def b(n, soc):
if n == 0:
if soc > 0 and is_cube(soc): return 1
return 0
return b(n-1, soc) + b(n-1, soc+n**3)
a = lambda n: b(n, 0)
print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Nov 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 18 2024
EXTENSIONS
a(25) and beyond from Michael S. Branicky, Nov 18 2024
STATUS
approved