login
A378140
a(n) is the least palindrome that has exactly n palindromic divisors other than itself and 1.
2
1, 4, 6, 232, 44, 636, 66, 484, 888, 616, 2442, 2112, 4224, 6006, 2772, 26862, 23232, 232232, 46464, 297792, 66066, 88088, 222222, 252252, 213312, 21122112, 234432, 606606, 828828, 444444, 279972, 21211212, 666666, 2444442, 2114112, 2578752, 888888, 4228224, 42422424, 23555532, 54999945, 82711728
OFFSET
0,2
EXAMPLE
a(4) = 44 because 44 is a palindrome with exactly 4 palindromic divisors other than itself and 1, namely 2, 4, 11 and 22, and no smaller palindrome works.
MAPLE
ispali:= proc(n) rev(n) = n end proc:
g:= proc(x) nops(select(ispali, numtheory:-divisors(x) minus {1, x})) end proc:
F:= proc(m)
local x1, x2, x3;
if m::even then
[seq(seq(rev(x1) + 10^(m/2)*x1, x1 = 10^(m/2-1) .. 10^(m/2)-1))]
else
[seq(seq(rev(x1) + 10^((m-1)/2)*x2 + 10^((m+1)/2)*x1, x2=0..9), x1=10^((m-1)/2-1)..10^((m-1)/2)-1)];
fi
end proc:
N:= 50: # for a(0) .. a(N)
V:= Array(0..N): count:= 0:
for d from 1 while count <N+1 do
for x in F(d) while count < N+1 do
v:= g(x);
if v <= N and V[v] = 0 then V[v]:= x; count:= count+1; fi
od od:
convert(V, list);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert Israel, Jan 08 2025
STATUS
approved