login
A378077
Triangle read by rows: T(n,k) is the number of embeddings on the sphere of planar graphs with n vertices and k faces having connectivity exactly 2 and minimum vertex degree at least 3, k=6..2n-5.
3
1, 1, 1, 3, 7, 2, 1, 8, 35, 60, 47, 12, 0, 5, 72, 307, 647, 652, 325, 59, 0, 3, 86, 776, 3395, 7647, 9582, 6654, 2442, 368, 0, 0, 45, 1041, 9091, 38876, 94278, 136628, 121204, 64232, 18916, 2363, 0, 0, 18, 827, 14407, 111076, 468211, 1192511, 1937266, 2049784, 1409199, 607746, 150161, 16253
OFFSET
6,4
COMMENTS
The graphs are 2-connected, but not 3-connected. Graphs with minimum degree at least 3 are also called homeomorphically irreducible.
The number of edges is n + k - 2.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 6..95 (rows 6..14)
FORMULA
T(n,k) = A212438(n,k) - A378075(n,k).
EXAMPLE
Triangle begins:
n\k| 6 7 8 9 10 11 12 13 14 15 16 17
-----+------------------------------------------------------------------------
6 | 1, 1;
7 | 1, 3, 7, 2;
8 | 1, 8, 35, 60, 47, 12;
9 | 0, 5, 72, 307, 647, 652, 325, 59;
10 | 0, 3, 86, 776, 3395, 7647, 9582, 6654, 2442, 368;
11 | 0, 0, 45, 1041, 9091, 38876, 94278, 136628, 121204, 64232, 18916, 2363;
...
CROSSREFS
Rows sums are A187927.
Antidiagonals sums give A187928.
Cf. A378075.
Sequence in context: A093097 A343201 A086465 * A182502 A059818 A374829
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Nov 15 2024
STATUS
approved