login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,4,5} for all i=1,...,n.
0

%I #8 Dec 03 2024 12:40:28

%S 1,0,0,0,0,0,1,1,0,0,0,0,1,3,1,0,0,0,1,6,6,1,0,0,1,10,20,10,1,1,1,15,

%T 50,50,15,6,7,21,105,175,105,36,42,49,196,490,490,231,183,217,392,

%U 1176,1764,1246,785,946,1141,2646,5292,5418,3613,3664,4390,6601,14112,19614

%N Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,4,5} for all i=1,...,n.

%D D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

%H Michael A. Allen and Kenneth Edwards, <a href="https://doi.org/10.1080/03081087.2022.2107979">Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices</a>, Lin. Multilin. Alg. 72:13 (2024) 2091-2103.

%H V. Baltic, <a href="http://pefmath.etf.rs/vol4num1/AADM-Vol4-No1-119-135.pdf">On the number of certain types of strongly restricted permutations</a>, Applicable Analysis and Discrete Mathematics, 4(1) (2010), 119-135.

%H Kenneth Edwards and Michael A. Allen, <a href="https://doi.org/10.1016/j.dam.2015.02.004">Strongly restricted permutations and tiling with fences</a>, Discrete Applied Mathematics, 187 (2015), 82-90.

%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,0,2,3,0,-2,-2,0,-1,-2,-3,1,1,1,0,0,0,1).

%F a(n) = a(n-3) + 2*a(n-6) + 3*a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) - 2a(n-13) - 3*a(n-14) + a(n-15) + a(n-16) + a(n-17) + a(n-21) for n >= 21.

%F G.f.: (1 - x)*(1 + x + x^2 - x^6 - 3*x^7 - 3*x^8 - 2*x^9 - x^10 - x^11 - x^12 - x^13)/(1 - x^3 - 2*x^6 - 3*x^7 + 2*x^9 + 2*x^10 + x^12 + 2*x^13 + 3*x^14 - x^15 - x^16 - x^17 - x^21).

%e a(6) = 1: 561234.

%e a(7) = 1: 6712345.

%t CoefficientList[Series[1/((1-x^7-x^6-x^13/(1-x^7-x^6/(1-x^7/(1-x^3))))), {x, 0, 65}],x]

%Y See A376743 for other sequences related to strongly restricted permutations.

%Y Cf. A377715, A001263.

%K easy,nonn

%O 0,14

%A _Michael A. Allen_, Nov 13 2024