Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 26 2024 16:28:44
%S 1,0,-42,-2772,-5399688,-704781084,-943173698460,-180121119486672,
%T -188146584694894350,-46293152603021155692,-40574254265781269371884,
%U -11963000065787771567311500,-9221266403646163252100062068,-3107813621461888912485774582588,-2176998806586925223600540321844120
%N Expansion of the 6048th root of the series 2*E_6(x) - E_6(x)^2, where E_6 is the Eisenstein series of weight 6.
%C Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_6(x) lies in P(12) (Heninger et al.).
%C We claim that the series 2*E_6(x) - E_6(x)^2 belongs to P(6048).
%C Proof.
%C E_6(x) = 1 - 504*Sum_{n >= 1} sigma_5(n)*x^n. Hence,
%C 2*E_6(x) - E_6(x)^2 = 1 - (504^2)*( Sum_{n >= 1} sigma_5(n)*x^n )^2 is in R.
%C Hence, 2*E_6(x) - E_6(x)^2 == 1 (mod 504^2) == 1 (mod (2^6)*(3^4)*(7^2)).
%C It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_6(x) - E_6(x)^2 belongs to P((2^5)*(3^3)*7) = P(6048). End Proof.
%p with(numtheory):
%p E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
%p seq(coeftayl((2*E(6) - E(6)^2)^(1/6048), q = 0, n),n = 0..20);
%Y Cf. A013973 (E_6), A109817 ( (E_6)^1/12 ), A280869 (E_6)^2, A341871 - A341875, A377973, A377974, A377976, A377977.
%K sign,easy
%O 0,3
%A _Peter Bala_, Nov 14 2024