login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the dihedral angle, in radians, between triangular and square faces in a snub cube.
2

%I #7 Nov 13 2024 16:31:59

%S 2,4,9,5,5,3,1,6,3,0,5,7,7,7,3,3,4,3,4,8,3,8,2,3,4,1,6,2,6,7,7,8,8,9,

%T 8,1,0,7,8,6,7,3,0,6,0,3,6,0,5,3,1,1,6,6,1,9,1,0,9,5,2,7,3,7,3,6,2,2,

%U 9,9,0,0,3,9,0,3,2,8,8,4,4,9,5,5,8,9,7,2,0,6

%N Decimal expansion of the dihedral angle, in radians, between triangular and square faces in a snub cube.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SnubCube.html">Snub Cube</a>.

%F Equals arcsec(sqrt(12*A377604^2 - 3)) + arcsec(sqrt(4*A377604^2 - 1)).

%F Equals Pi - arccos(sqrt(1 - 2/(3*A058265))).

%F Equals Pi - arccos(c), where c is the positive real root of 27*x^6 - 99*x^4 + 129*x^2 - 49.

%e 2.4955316305777334348382341626778898107867306036053...

%t First[RealDigits[Pi - ArcCos[Root[27*#^6 - 99*#^4 + 129*#^2 - 49 &, 2]], 10, 100]] (* or *)

%t First[RealDigits[Min[PolyhedronData["SnubCube", "DihedralAngles"]], 10, 100]]

%Y Cf. A058265, A377602, A377603, A377604, A377605, A377969.

%K nonn,cons,easy

%O 1,1

%A _Paolo Xausa_, Nov 13 2024