login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (33^k - 2^k)/31 is prime.
0

%I #5 Nov 07 2024 23:09:03

%S 71,103,1213,2441,2789,4159

%N Numbers k such that (33^k - 2^k)/31 is prime.

%C The definition implies that k must be a prime.

%C a(7) > 10^5.

%H P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>.

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.

%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>.

%t Select[Prime[Range[10000]], PrimeQ[(33^# - 2^#)/31] &]

%Y Cf. A062587, A062589, A127996, A127997, A128344, A204940, A217320, A225807, A229542, A375161, A375236, A377031.

%K nonn,hard,more

%O 1,1

%A _Robert Price_, Nov 07 2024