login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the surface area of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.
3

%I #6 Nov 08 2024 11:38:18

%S 1,7,4,2,9,2,0,3,0,3,4,2,3,2,3,9,2,0,8,8,2,9,3,2,1,0,7,5,2,6,2,8,3,4,

%T 6,5,7,2,8,4,8,5,2,2,1,9,2,0,4,4,5,1,9,1,6,5,2,8,4,8,8,9,6,8,9,4,8,0,

%U 3,8,8,9,1,6,2,1,1,6,7,2,8,6,6,6,0,7,2,1,9,7

%N Decimal expansion of the surface area of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GreatRhombicosidodecahedron.html">Great Rhombicosidodecahedron</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_icosidodecahedron">Truncated icosidodecahedron</a>.

%F Equals 30*(1 + sqrt(3) + sqrt(5 + 2*sqrt(5))) = 30*(A090388 + A019970).

%e 174.292030342323920882932107526283465728485221920...

%t First[RealDigits[30*(1 + Sqrt[3] + Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "SurfaceArea"], 10, 100]]

%Y Cf. A377797 (volume), A377798 (circumradius), A377799 (midradius).

%Y Cf. A090388, A019970.

%K nonn,cons,easy

%O 3,2

%A _Paolo Xausa_, Nov 07 2024