login
A377744
E.g.f. satisfies A(x) = exp(x) / (1 - x * A(x))^4.
2
1, 5, 69, 1741, 65025, 3238401, 202252549, 15216086789, 1340493558497, 135418524663457, 15436319894361141, 1960277599669850517, 274474966233168968353, 42012725272366653895169, 6979546631782182590117189, 1250777360824265136694022341, 240516661686854988775792192833
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(5*k+3,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(n-k-1)*binomial(5*k+3, k)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 06 2024
STATUS
approved