Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Nov 16 2024 14:57:54
%S 1,2,12,224,13440,2666496,1791885312,4161269661696,33955960439439360,
%T 987107315743488737280,103404624282172311371513856,
%U 39408968779516596852827017445376,55084280201257118417007491904448757760,284322478318511376197290687371005495020093440
%N a(n) = (1/(n-1)!) * Product_{i=1..n-1} (2^n-2^i).
%H Nikita Babich, <a href="/A377642/b377642.txt">Table of n, a(n) for n = 1..100</a>
%F a(n) = (Product_{i=1..n-1}(2^n-2^i))/((n-1)!).
%F a(n) = A028365(n-1)/A000142(n-1).
%F a(n) = A000079(n-1) * A053601(n-1).
%F a(n) ~ A048651 * 2^(n*(n-1)) / (n-1)!. - _Vaclav Kotesovec_, Nov 13 2024
%t Table[Product[2^n - 2^i, {i, 1, n - 1}]/Factorial[n - 1], {n, 1, 20}]
%o (PARI) a(n)=prod(i=1, n-1, 2^n-2^i)/(n-1)! \\ _Andrew Howroyd_, Nov 10 2024
%Y Appears to be main diagonal of A270882.
%Y Cf. A000079, A000142, A002884, A028365, A048651, A053601.
%K nonn,easy
%O 1,2
%A _Nikita Babich_, Nov 05 2024