login
A377617
a(n) is the number of iterations of x -> 3*x + 4 until (# composites reached) = (# primes reached), starting with prime(n).
1
1, 19, 13, 1, 11, 3, 1, 3, 17, 1, 3, 1, 3, 1, 1, 5, 7, 1, 1, 1, 13, 7, 1, 3, 1, 3, 5, 1, 5, 1, 1, 3, 1, 3, 1, 7, 1, 1, 1, 7, 5, 3, 5, 1, 1, 3, 1, 11, 1, 3, 1, 1, 3, 5, 1, 1, 7, 1, 1, 1, 3, 7, 1, 3, 1, 1, 3, 1, 1, 3, 3, 1, 1, 5, 1, 15, 5, 1, 1, 13, 1, 1, 5, 5
OFFSET
1,2
COMMENTS
For a guide to related sequences, see A377609.
EXAMPLE
Starting with prime(1) = 2, we have 3*2+4 = 10; the chain (2,10) has 1 prime and 1 composite. So a(1) = 2-1 = 1.
MATHEMATICA
chain[{start_, u_, v_}] := NestWhile[Append[#, u*Last[#] + v] &, {start}, !
Count[#, _?PrimeQ] == Count[#, _?(! PrimeQ[#] &)] &];
chain[{Prime[1], 3, 4}]
Map[Length[chain[{Prime[#], 3, 4}]] &, Range[100]] - 1
(* Peter J. C. Moses, Oct 31 2024 *)
CROSSREFS
Cf. A377609.
Sequence in context: A261717 A323832 A306384 * A196188 A089294 A088934
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 17 2024
STATUS
approved