login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).
3

%I #25 Nov 17 2024 07:36:32

%S 1,1,1,1,1,2,1,1,2,5,1,1,2,6,14,1,1,2,7,21,42,1,1,2,8,30,78,132,1,1,2,

%T 9,41,136,299,429,1,1,2,10,54,222,630,1172,1430,1,1,2,11,69,342,1221,

%U 2959,4677,4862,1,1,2,12,86,502,2192,6774,14058,18947,16796,1,1,2,13,105,708,3687,14129,37853,67472,77746,58786,1,1,2,14,126,966,5874,27184

%N Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).

%C The Hankel sequence transform of row n satisfies the Somos-4 recurrence c(k) = (c(k-1) * c(k-3) + n*c(k-2)^2) / c(k-4). All Somos-4 sequences which are beginning with 1, 1, 1, 1, n, ... will be covered, but the Hankel transform will start with the terms 1, n, ... in each case.

%F The generating function A(x) of row n satisfies: 0 = (x^3 - x^2)*A(x)^2 + (n*x^3 - (n+1)*x^2 - x)*A(x) + ((n+1)*x^2 - x).

%F Let d(m, n) = ( d(m-3, n)*d(m-2, n) + n)/( d(m-5, n)*d(m-4, n)*d(m-3, n)^2*d(m-2, n)^2*d(m-1, n) ) for m = even and d(m, n) = 1/( d(m-1, n)*d(m-2, n) ) for m = odd with d( < 1 , n) = 1, then the generating function of row n can be expanded as continued fractions: 1/(1 - x/(1 - d(0, n)*x/(1 - d(1, n)*x/(1 - d(2, n)*x/(...))))).

%F d(m, n)*d(m+1, n) is a rational solution in x of the elliptic equation y^2 = -4*x^3 + ((n+1)^2 + 8)*x^2 - 2*(n+3)*x + 1. The division polynomials for multiples of the point with x = 1, correspondent to the Hankel transform of row n in the array T(n, k).

%F T(n, k + 2) = Sum_{j >= 0} A377443(k, j)*n^j. This polynomial starts with A000108(k+2) + A371965(k+2)*n + ..., where A371965 is known to count peaks in the set of Catalan words of length k.

%e The array begins:

%e [0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108

%e [1] 1, 1, 2, 6, 21, 78, 299, 1172, 4677, ... = A254316

%e [2] 1, 1, 2, 7, 30, 136, 630, 2959, 14058, ...

%e [3] 1, 1, 2, 8, 41, 222, 1221, 6774, 37853, ...

%e [4] 1, 1, 2, 9, 54, 342, 2192, 14129, 91494, ...

%e [5] 1, 1, 2, 10, 69, 502, 3687, 27184, 201045, ...

%o (PARI)

%o T(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))

%Y Cf. A377442 (extension for -n), A105633 (row -1), A152172 (row -2).

%Y Cf. A000108 (row 0), A254316 (row 1).

%Y Cf. A000012 (Hankel transform of row 0), A006720 (Hankel transform of row 1).

%Y Cf. A330025 (Hankel transform of row -1), A328380 (Hankel transform of row -2).

%Y Cf. A371965, A377443.

%K nonn,tabl

%O 0,6

%A _Thomas Scheuerle_, Oct 28 2024