login
Infinite sequence of integers a(1), a(2), ... such that for any n > 0, a(n) is as small as possible (in absolute value) and the means of consecutive terms are all distinct; in case of a tie, preference is given to the positive value.
3

%I #10 Oct 28 2024 16:24:26

%S 0,1,-2,-3,-5,-8,-6,-11,-13,-21,-16,9,-42,-24,-25,-27,-34,-35,-46,10,

%T 2,90,42,31,26,11,30,18,58,41,20,86,43,60,45,103,48,54,105,83,-48,

%U -151,-155,-59,-87,-79,-146,106,-157,-109,-218,-208,-88,-45,-99,-131,27

%N Infinite sequence of integers a(1), a(2), ... such that for any n > 0, a(n) is as small as possible (in absolute value) and the means of consecutive terms are all distinct; in case of a tie, preference is given to the positive value.

%C This sequence is a variant of A377351 allowing negative values.

%C All terms are distinct.

%H Rémy Sigrist, <a href="/A377388/b377388.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A377388/a377388.txt">C++ program</a>

%e The first terms, alongside the means of consecutive terms ending with a(n), are:

%e n a(n) Corresponding means

%e - ---- -----------------------------------------

%e 1 0 0

%e 2 1 1/2, 1

%e 3 -2 -1/3, -1/2, -2

%e 4 -3 -1, -4/3, -5/2, -3

%e 5 -5 -9/5, -9/4, -10/3, -4, -5

%e 6 -8 -17/6, -17/5, -9/2, -16/3, -13/2, -8

%e 7 -6 -23/7, -23/6, -24/5, -11/2, -19/3, -7, -6

%o (C++) // See Links section.

%o (Python)

%o from fractions import Fraction

%o from itertools import count, islice

%o def A377388gen(): # generator of terms

%o alst, means_seen = [0], {0}

%o while True:

%o yield alst[-1]

%o for i in count(1):

%o failed = True

%o for k in [i, -i]:

%o if k in means_seen: continue

%o mk, failed, sk = {k}, False, k

%o for j in range(1, len(alst)+1):

%o sk += alst[-j]

%o m = Fraction(sk, j+1)

%o if m in means_seen or m in mk: failed = True; break

%o mk.add(m)

%o if not failed:

%o means_seen |= mk

%o alst.append(k)

%o break

%o if not failed: break

%o print(list(islice(A377388gen(), 60))) # _Michael S. Branicky_, Oct 27 2024, Oct 28 2024

%Y Cf. A377351, A377389.

%K sign

%O 1,3

%A _Rémy Sigrist_, Oct 27 2024