%I #10 Oct 26 2024 10:48:41
%S 1,1,1,8,62,744,11102,201704,4323720,106591584,2974873656,92674125840,
%T 3188299718496,120053825169888,4911082489042992,216879763758962688,
%U 10283600782413709056,521088305671611058176,28101278301136842204288,1606968565080853531472640
%N E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^2)/A(x)^2.
%F a(n) = Sum_{k=0..floor((2*n+1)/3)} (2*n-2*k)!/(2*n-3*k+1)! * |Stirling1(n,k)|.
%o (PARI) a(n) = sum(k=0, (2*n+1)\3, (2*n-2*k)!/(2*n-3*k+1)!*abs(stirling(n, k, 1)));
%Y Cf. A365438, A367080, A367138, A377329.
%Y Cf. A377325, A377350.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Oct 26 2024