login
A377339
E.g.f. satisfies A(x) = ( 1 + (exp(x*A(x)) - 1)/A(x) )^2.
1
1, 2, 4, 20, 144, 1332, 15920, 225332, 3758272, 71711540, 1544139216, 37040248500, 979378764320, 28308318200372, 887957701803952, 30043664101434164, 1090686549233837952, 42290355849577306932, 1744321111108101722768, 76261355010301941319604
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377347.
a(n) = 2 * Sum_{k=0..floor((2*n+2)/3)} (2*n-2*k+1)!/(2*n-3*k+2)! * Stirling2(n,k).
PROG
(PARI) a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*stirling(n, k, 2));
CROSSREFS
Cf. A377347.
Sequence in context: A324311 A303671 A330663 * A370766 A102087 A372234
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 26 2024
STATUS
approved