%I #10 Oct 25 2024 09:29:02
%S 1,1,1,5,28,244,2566,33438,508544,8926944,176989488,3917823216,
%T 95719041408,2559130965312,74312569125744,2329169772108528,
%U 78371469374088960,2817744760964392704,107807187260426164992,4373419962377871956736,187507942522161269068800
%N E.g.f. satisfies A(x) = 1 - log(1 - x*A(x))/A(x).
%F a(n) = Sum_{k=0..floor((n+1)/2)} (n-k)!/(n-2*k+1)! * |Stirling1(n,k)|.
%o (PARI) a(n) = sum(k=0, (n+1)\2, (n-k)!/(n-2*k+1)!*abs(stirling(n, k, 1)));
%Y Cf. A052802, A138013, A367159.
%Y Cf. A365438, A377323.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Oct 24 2024