login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 24*arctan(sqrt(2)).
3

%I #14 Nov 20 2024 23:44:24

%S 2,2,9,2,7,5,9,8,8,3,4,9,8,8,2,2,2,6,7,5,9,3,2,5,7,0,4,6,0,3,7,8,1,8,

%T 6,1,0,1,8,4,1,9,5,2,6,8,0,2,4,0,1,3,1,7,8,3,0,3,2,7,5,5,1,0,3,7,2,5,

%U 8,8,9,1,0,1,6,9,5,4,3,4,9,2,9,2,9,7,3,9,8,4

%N Decimal expansion of 24*arctan(sqrt(2)).

%C Dehn invariant of a regular octahedron and (small) rhombicuboctahedron with unit edge and (negated) of a cuboctahedron and truncated cube with unit edge.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DehnInvariant.html">Dehn Invariant</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cuboctahedron.html">Cuboctahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularOctahedron.html">Regular Octahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmallRhombicuboctahedron.html">Small Rhombicuboctahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedCube.html">Truncated Cube</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals 24*A195696 = 2*A377277.

%e 22.9275988349882226759325704603781861018419526802...

%t First[RealDigits[24*ArcTan[Sqrt[2]], 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["Octahedron", "DehnInvariant"], 10, 100]]

%o (PARI) 24*atan(sqrt(2)) \\ _Charles R Greathouse IV_, Nov 20 2024

%Y Cf. A195696, A377277.

%K nonn,cons,easy

%O 2,1

%A _Paolo Xausa_, Oct 24 2024