login
Decimal expansion of 24*arctan(sqrt(2)).
3

%I #14 Nov 20 2024 23:44:24

%S 2,2,9,2,7,5,9,8,8,3,4,9,8,8,2,2,2,6,7,5,9,3,2,5,7,0,4,6,0,3,7,8,1,8,

%T 6,1,0,1,8,4,1,9,5,2,6,8,0,2,4,0,1,3,1,7,8,3,0,3,2,7,5,5,1,0,3,7,2,5,

%U 8,8,9,1,0,1,6,9,5,4,3,4,9,2,9,2,9,7,3,9,8,4

%N Decimal expansion of 24*arctan(sqrt(2)).

%C Dehn invariant of a regular octahedron and (small) rhombicuboctahedron with unit edge and (negated) of a cuboctahedron and truncated cube with unit edge.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DehnInvariant.html">Dehn Invariant</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cuboctahedron.html">Cuboctahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularOctahedron.html">Regular Octahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmallRhombicuboctahedron.html">Small Rhombicuboctahedron</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedCube.html">Truncated Cube</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals 24*A195696 = 2*A377277.

%e 22.9275988349882226759325704603781861018419526802...

%t First[RealDigits[24*ArcTan[Sqrt[2]], 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["Octahedron", "DehnInvariant"], 10, 100]]

%o (PARI) 24*atan(sqrt(2)) \\ _Charles R Greathouse IV_, Nov 20 2024

%Y Cf. A195696, A377277.

%K nonn,cons,easy

%O 2,1

%A _Paolo Xausa_, Oct 24 2024