login
Number of partitions of 1 into {1/1^n, 1/2^n, 1/3^n, ..., 1/n^n}.
0

%I #10 Dec 21 2024 01:02:25

%S 1,2,3,19,36,522332,6117036,1183731130981

%N Number of partitions of 1 into {1/1^n, 1/2^n, 1/3^n, ..., 1/n^n}.

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e a(3) = 3 because we have 27 * (1/27) = 8 * (1/8) = 1.

%Y Cf. A020473, A378270, A378271.

%K nonn,more

%O 1,2

%A _Ilya Gutkovskiy_, Dec 12 2024

%E a(6)-a(8) from _Jinyuan Wang_, Dec 13 2024