login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377224
Number of ways to write n as x*(5*x+1) + y*(5*y+1)/2 + z*(5*z+1)/2, where x,y,z are integers with y*(5*y+1) <= z*(5*z+1).
1
1, 0, 1, 1, 2, 1, 3, 1, 2, 3, 2, 3, 2, 2, 1, 3, 1, 3, 4, 1, 3, 2, 4, 2, 6, 2, 4, 5, 4, 3, 5, 3, 3, 4, 2, 2, 4, 1, 3, 3, 3, 3, 7, 1, 6, 6, 6, 3, 8, 4, 3, 7, 3, 7, 4, 4, 2, 4, 1, 5, 6, 1, 6, 7, 4, 4, 9, 6, 5, 8, 3, 6, 5, 3, 4, 5, 3, 3, 4, 1, 9, 6, 5, 3, 9, 5, 6, 9, 6, 8, 10, 3, 3, 9, 4, 7, 7, 4, 7, 5, 4
OFFSET
0,5
COMMENTS
Conjecture 1: a(n) = 0 only for n = 1. Also, a(n) = 1 only for n = 0, 2, 3, 5, 7, 14, 16, 19, 37, 43, 58, 61, 79.
This has been verified for n <= 2*10^6.
Conjecture 2: Let N be the set of all nonnegative integers. Then
{x*(5*x+1) + y*(5*y+1)/2 + 5*z*(5*z+1)/2: x,y,z are integers} = N\{1,5},
{x*(5*x+1) + y*(5*y+1)/2 + 3*z*(5*z+1)/2: x,y,z are integers} = N\{1,5,32},
{x*(5*x+1) + y*(5*y+1)/2 + 2*z*(5*z+1): x,y,z are integers} = N\{1,5,70},
and
{x*(5*x+1)/2 + y*(5*y+1)/2 + z*(5*z+1)/2: x,y,z are integers} = N\{1,10,19,94}.
Conjecture 3: We have
{x*(5*x+3) + y*(5*y+3)/2 + 3*z*(5*z+3)/2: x,y,z are integers} = N\{31,77},
{x*(5*x+3) + y*(5*y+3)/2 + 5*z*(5*z+3): x,y,z are integers} = N\{10,16},
and
{x*(5*x+3)/2 + y*(5*y+3)/2 + 5*z*(5*z+3)/2: x,y,z are integers} = N\{3,15,29,44}.
LINKS
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162 (2016), 190-211.
Zhi-Wei Sun, Universal sums of three quadratic polynomials, Sci. China Math. 63 (2020), 501-520.
Zhi-Wei Sun, New results similar to Lagrange's four-square theorem, arXiv:2411.14308 [math.NT], 2024.
EXAMPLE
a(14) = 1 with 14 = 0*(5*0+1) + 1*(5*1+1)/2 + 2*(5*2+1)/2.
a(37) = 1 with 37 = (-1)*(5*(-1)+1) + (-2)*(5*(-2)+1)/2 + 3*(5*3+1)/2.
a(58) = 1 with 58 = (-2)*(5*(-2)+1) + (-1)*(5*(-1)+1)/2 + (-4)*(5*(-4)+1)/2.
a(79) = 1 with 79 = -4*(5*(-4)+1) + 0*(5*0+1)/2 + 1*(5*1+1)/2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[40(n-x(5x+1)-y(5y+1)/2)+1], r=r+1], {x, -Floor[(Sqrt[20n+1]+1)/10], (Sqrt[20n+1]-1)/10}, {y, -Floor[(Sqrt[20(n-x(5x+1))+1]+1)/10], Floor[(Sqrt[20(n-x(5x+1))+1]-1)/10]}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Zhi-Wei Sun, Nov 13 2024
STATUS
approved