login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(k^2*a(k)) < 1.
3

%I #16 Oct 20 2024 14:14:29

%S 2,1,1,1,1,1,3,9,171,122014,17661589931,412924014578486602517,

%T 1248808068140660770289141544749321839183623,

%U 4529027355107615424925871833487047912228337079416162414871862143803627237910792872226

%N Lexicographically earliest sequence of positive integers a(1), a(2), ... such that for any n >= 0, s(n) = Sum_{k=1..n} 1/(k^2*a(k)) < 1.

%H Alois P. Heinz, <a href="/A377205/b377205.txt">Table of n, a(n) for n = 1..17</a>

%e s(0), s(1), ... = 0, 1/2, 3/4, 31/36, 133/144, 3469/3600, 3569/3600, ... .

%p s:= proc(n) option remember; `if`(n=0, 0, s(n-1)+1/(n^2*a(n))) end:

%p a:= proc(n) option remember; 1+floor(1/((1-s(n-1))*n^2)) end:

%p seq(a(n), n=1..14);

%Y Cf. A000290, A013661, A374663, A377229, A377230.

%K nonn

%O 1,1

%A _Alois P. Heinz_, Oct 19 2024