%I #17 Nov 17 2024 07:41:16
%S 1,2,4,3,6,9,4,8,12,16,5,10,15,20,25,6,12,18,24,30,36,7,14,21,28,35,
%T 42,50,8,16,24,32,40,48,60,72,9,18,27,36,45,56,70,84,98,10,20,30,40,
%U 50,64,80,96,112,128,11,22,33,44,55,72,90,108,126,144,162,12,24
%N Triangle read by rows: T(n,k) is the maximum volume of an integer-sided box that can be made from a piece of paper of size n X k by cutting away identical squares at each corner and folding up the sides, n >= 3, 3 <= k <= n.
%C For a sketch see linked illustration "Box made from nXk-paper".
%C The first few rows follow (n-2) * (k-2), so the initial terms are the same as in A075362. The first difference is at T(9,9) = 50 which is greater than 7 * 7.
%H Felix Huber, <a href="/A377133/b377133.txt">Rows n = 3..142 of triangle, flattened</a>
%H Felix Huber, <a href="/A377133/a377133.pdf">Box made from nXk-paper</a>
%F T(n,k) = (n-2*x)*(k-2*x)*x with x = round((n+k-(sqrt(n^2+k^2-n*k)))/6).
%e Triangle T(n,k) begins:
%e n\k 3 4 5 6 7 8 9 10 11 12 13 ...
%e 3 1
%e 4 2 4
%e 5 3 6 9
%e 6 4 8 12 16
%e 7 5 10 15 20 25
%e 8 6 12 18 24 30 36
%e 9 7 14 21 28 35 42 50
%e 10 8 16 24 32 40 48 60 72
%e 11 9 18 27 36 45 56 70 84 98
%e 12 10 20 30 40 50 64 80 96 112 128
%e 13 11 22 33 44 55 72 90 108 126 144 162
%p A377113:=proc(n,k)
%p local a,x,V;
%p a:=0;
%p for x to (k-1)/2 do
%p V:=x*(n-2*x)*(k-2*x);
%p if V>a then
%p a:=V
%p fi
%p od;
%p return a
%p end proc;
%p seq(seq(A377113(n,k),k=3..n),n=3..14);
%Y Cf. A075362, A355880, A375580, A375785, A375785.
%K nonn,tabl,easy
%O 3,2
%A _Felix Huber_, Oct 25 2024